k-Du Bois and k-rational singularities (joint work w/ Sridhar Venkatesh and Anh Duc Vo)

Wanchun Shen
Harvard University

Birational Geometry Seminar, August 2023

Outline

(1) Rational and Du Bois singularities

Outline

(1) Rational and Du Bois singularities
(2) k-rational and k-Du Bois singularities in the local complete intersection (lci) case

Outline

(1) Rational and Du Bois singularities
(2) k-rational and k-Du Bois singularities in the local complete intersection (lci) case
(3) Problem outside the Ici case

Outline

(1) Rational and Du Bois singularities
(2) k-rational and k-Du Bois singularities in the local complete intersection (lci) case
(3) Problem outside the Ici case

4 Definitions of k-rational and k-Du Bois singularities in general

Outline

(1) Rational and Du Bois singularities
(2) k-rational and k-Du Bois singularities in the local complete intersection (lci) case
(3) Problem outside the Ici case

44 Definitions of k-rational and k-Du Bois singularities in general
(5) Properties of k-rational and k-Du Bois singularities

Throughout, we work over the complex numbers \mathbb{C}.

Rational singularities

Definition (Artin 1966, Kempf 1973)

A variety X is said to have rational singularities if for some (any) proper birrational map $f: \tilde{X} \rightarrow X$ such that \tilde{X} is smooth, the natural map

$$
\mathcal{O}_{X} \rightarrow \mathbf{R} f_{*} \mathcal{O}_{\tilde{x}}
$$

is a quasi-isomorphism.

Rational singularities

Definition (Artin 1966, Kempf 1973)

A variety X is said to have rational singularities if for some (any) proper birrational map $f: \tilde{X} \rightarrow X$ such that \tilde{X} is smooth, the natural map

$$
\mathcal{O}_{X} \rightarrow \mathbf{R} f_{*} \mathcal{O}_{\tilde{x}}
$$

is a quasi-isomorphism.

Example

(1) Smooth varieties have rational singularities;

Rational singularities

Definition (Artin 1966, Kempf 1973)

A variety X is said to have rational singularities if for some (any) proper birrational map $f: \tilde{X} \rightarrow X$ such that \tilde{X} is smooth, the natural map

$$
\mathcal{O}_{X} \rightarrow \mathbf{R} f_{*} \mathcal{O}_{\tilde{x}}
$$

is a quasi-isomorphism.

Example

(1) Smooth varieties have rational singularities;
(2) Curves with rational singularities are smooth;

Rational singularities

Definition (Artin 1966, Kempf 1973)

A variety X is said to have rational singularities if for some (any) proper birrational map $f: \tilde{X} \rightarrow X$ such that \tilde{X} is smooth, the natural map

$$
\mathcal{O}_{X} \rightarrow \mathbf{R} f_{*} \mathcal{O}_{\tilde{x}}
$$

is a quasi-isomorphism.

Example

(1) Smooth varieties have rational singularities;
(2) Curves with rational singularities are smooth;
(3) Singular surfaces in \mathbb{P}^{3} with rational singularities are exactly those with the $A D E$ singularities;

Rational singularities

Definition (Artin 1966, Kempf 1973)

A variety X is said to have rational singularities if for some (any) proper birrational map $f: \tilde{X} \rightarrow X$ such that \tilde{X} is smooth, the natural map

$$
\mathcal{O}_{X} \rightarrow \mathbf{R} f_{*} \mathcal{O}_{\tilde{x}}
$$

is a quasi-isomorphism.

Example

(1) Smooth varieties have rational singularities;
(2) Curves with rational singularities are smooth;
(3) Singular surfaces in \mathbb{P}^{3} with rational singularities are exactly those with the $A D E$ singularities;
(1) Quotient singularities are rational;

Rational singularities

Definition (Artin 1966, Kempf 1973)

A variety X is said to have rational singularities if for some (any) proper birrational map $f: \tilde{X} \rightarrow X$ such that \tilde{X} is smooth, the natural map

$$
\mathcal{O}_{X} \rightarrow \mathbf{R} f_{*} \mathcal{O}_{\tilde{x}}
$$

is a quasi-isomorphism.

Example

(1) Smooth varieties have rational singularities;
(2) Curves with rational singularities are smooth;
(3) Singular surfaces in \mathbb{P}^{3} with rational singularities are exactly those with the $A D E$ singularities;
(1) Quotient singularities are rational;
(5) Toric varieties have rational singularities.

The Du Bois complex

Let X be a projective complex algebraic variety.
X is smooth \longrightarrow Hodge structure on $H^{n}(X, \mathbb{C})$

$$
\operatorname{Gr}_{F}^{k} H^{n}(X, \mathbb{C})=H^{n-k}\left(X, \Omega_{X}^{k}\right)
$$

X is singular \longrightarrow Mixed Hodge structure on $H^{n}(X, \mathbb{C})$

$$
\operatorname{Gr}_{F}^{k} H^{n}(X, \mathbb{C})=\mathbb{H}^{n-k}\left(X, \Omega_{X}^{k}\right)
$$

The Du Bois complex

Let X be a projective complex algebraic variety.
X is smooth \longrightarrow Hodge structure on $H^{n}(X, \mathbb{C})$

$$
\operatorname{Gr}_{F}^{k} H^{n}(X, \mathbb{C})=H^{n-k}\left(X, \Omega_{X}^{k}\right)
$$

X is singular \longrightarrow Mixed Hodge structure on $H^{n}(X, \mathbb{C})$

$$
\operatorname{Gr}_{F}^{k} H^{n}(X, \mathbb{C})=\mathbb{H}^{n-k}\left(X, \underline{\Omega}_{X}^{k}\right)
$$

Theorem (Deligne 1973, Du Bois 1981)

For any complex algebraic variety X, the objects $\underline{\Omega}_{X}^{k} \in D_{\text {coh }}^{b}(X)$ is independent of the choice of hyperresolution for all k.

The Du Bois complex

Let X be a projective complex algebraic variety.
X is smooth \longrightarrow Hodge structure on $H^{n}(X, \mathbb{C})$

$$
\operatorname{Gr}_{F}^{k} H^{n}(X, \mathbb{C})=H^{n-k}\left(X, \Omega_{X}^{k}\right)
$$

X is singular \longrightarrow Mixed Hodge structure on $H^{n}(X, \mathbb{C})$

$$
\operatorname{Gr}_{F}^{k} H^{n}(X, \mathbb{C})=\mathbb{H}^{n-k}\left(X, \underline{\Omega}_{X}^{k}\right)
$$

Theorem (Deligne 1973, Du Bois 1981)

For any complex algebraic variety X, the objects $\underline{\Omega}_{X}^{k} \in D_{\text {coh }}^{b}(X)$ is independent of the choice of hyperresolution for all k.

For each k, we have a natural map $\Omega_{X}^{k} \rightarrow \underline{\Omega}_{X}^{k}$. It is a quasi-isomorphism when X is smooth.

Examples
Example (Node)
Let X be the nodal cubic $\mathbb{x}^{2} z=x^{2}(x-z)$ in \mathbb{P}^{2}.

$$
\begin{aligned}
& \Omega_{x}^{\top}=\left[\theta_{p} \boxplus T_{u x} O_{p^{\prime}} \rightarrow \theta_{r, s}\right] \\
& \stackrel{i 13}{=} \theta_{x} \\
& \begin{aligned}
\Omega_{x}^{\prime} & =\left[\Omega_{p} \oplus \pi \times \Omega_{p p}^{\prime} \rightarrow S_{r, 3}^{\prime}\right] \\
& \simeq \pi \times \Omega_{p}^{\prime} \neq \Omega_{x}^{\prime}
\end{aligned}
\end{aligned}
$$

Example (Cusp)
Let X be the cuspidal cubic $y^{2} z=x^{3}$ in \mathbb{P}^{2}.

$$
\begin{array}{rlrl}
p \rightarrow \mathbb{P}^{\prime} & & \Omega_{x}^{\prime}=\left[\theta_{p} \otimes \pi_{x} O_{p^{\prime}} \rightarrow \theta_{p}\right] \\
& \approx \pi_{*} \theta_{p^{\prime}} \neq \theta_{x} \\
p \rightarrow L & & \Omega_{x}^{\prime} \approx \pi_{*} \Omega_{p^{\prime}} \neq \Omega_{x}^{\prime}
\end{array}
$$

Du Bois singularities

Definition (Steenbrink 1983)

We say X has $D u$ Bois singularities if the natural map

$$
\mathcal{O}_{X} \rightarrow \underline{\Omega}_{X}^{0}
$$

is a quasi-isomorphism.

Du Bois singularities

Definition (Steenbrink 1983)

We say X has $D u$ Bois singularities if the natural map

$$
\mathcal{O}_{X} \rightarrow \underline{\Omega}_{X}^{0}
$$

is a quasi-isomorphism.

Theorem (Steenbrink 1983, Kollár 1995, Kovács 1999, Saito 2000)
Rational singularities are Du Bois.

Du Bois singularities

Definition (Steenbrink 1983)

We say X has $D u$ Bois singularities if the natural map

$$
\mathcal{O}_{X} \rightarrow \underline{\Omega}_{X}^{0}
$$

is a quasi-isomorphism.

Theorem (Steenbrink 1983, Kollár 1995, Kovács 1999, Saito 2000)
Rational singularities are Du Bois.

Example

(1) The nodal cubic has Du Bois singularities, but the cuspidal cubic does not;

Du Bois singularities

Definition (Steenbrink 1983)

We say X has $D u$ Bois singularities if the natural map

$$
\mathcal{O}_{X} \rightarrow \underline{\Omega}_{X}^{0}
$$

is a quasi-isomorphism.

Theorem (Steenbrink 1983, Kollár 1995, Kovács 1999, Saito 2000)
Rational singularities are Du Bois.

Example

(1) The nodal cubic has Du Bois singularities, but the cuspidal cubic does not;
(2) The simple elliptic singularities and cusp singularities of a surface are Du Bois but not rational.

Higher Du Bois singularities

Let X be a local complete intersection.

Higher Du Bois singularities

Let X be a local complete intersection.

Definition (Jung-Kim-Saito-Yoon 2021)

We say X has k-Du Bois singularities if the natural morphism

$$
\Omega_{X}^{p} \rightarrow \underline{\Omega}_{X}^{p}
$$

is a quasi-isomorphism for all $p \leq k$.

Higher Du Bois singularities

Let X be a local complete intersection.

Definition (Jung-Kim-Saito-Yoon 2021)

We say X has k-Du Bois singularities if the natural morphism

$$
\Omega_{X}^{p} \rightarrow \underline{\Omega}_{X}^{p}
$$

is a quasi-isomorphism for all $p \leq k$.

- 0-Du Bois singularities \Longleftrightarrow Du Bois singularities
- k-Du Bois $\Longrightarrow(k-1)$-Du Bois $\Longrightarrow \cdots$

Higher rational singularities

Let X be a local complete intersection.

Higher rational singularities

Let X be a local complete intersection.

Definition 1 (Friedman-Laza 2022)

A variety X has k-rational singularities if the natural map

$$
\Omega_{X}^{p} \rightarrow \mathbf{R} \mathcal{H o m}\left(\Omega_{X}^{n-p}, \omega_{X}^{\bullet}\right)[-n]
$$

is a quasi-isomorphism for all $p \leq k$.

Higher rational singularities

Let X be a local complete intersection.

Definition 1 (Friedman-Laza 2022)

A variety X has k-rational singularities if the natural map

$$
\Omega_{X}^{p} \rightarrow \mathbf{R} \mathcal{H o m}\left(\Omega_{X}^{n-p}, \omega_{X}^{\bullet}\right)[-n]
$$

is a quasi-isomorphism for all $p \leq k$.

Definition 2 (Mustață-Popa 2022)

A variety X has k-rational singularities if for some (any) strong log resolution $f: \tilde{X} \rightarrow X$, the natural map

$$
\Omega_{X}^{p} \rightarrow \mathbf{R} f_{*} \Omega_{\tilde{\chi}}^{p}(\log E)
$$

is a quasi-isomorphism for all $p \leq k$.

Higher rational singularities

Let X be a local complete intersection.

Definition 1 (Friedman-Laza 2022)

A variety X has k-rational singularities if the natural map

$$
\Omega_{X}^{p} \rightarrow \mathbf{R} \mathcal{H o m}\left(\Omega_{X}^{n-p}, \omega_{X}^{\bullet}\right)[-n]
$$

is a quasi-isomorphism for all $p \leq k$.

Definition 2 (Mustață-Popa 2022)

A variety X has k-rational singularities if for some (any) strong log resolution $f: \tilde{X} \rightarrow X$, the natural map

$$
\Omega_{X}^{p} \rightarrow \mathbf{R} f_{*} \Omega_{\tilde{\chi}}^{p}(\log E)
$$

is a quasi-isomorphism for all $p \leq k$.
Equivalent in the Ici case. Not known to be equivalent in general.

Implications

Theorem (Saito 1993, Saito 2009, Jung-Kim-Saito-Yoon 2021, Mustață-Olano-Popa-Witaszek 2021, Mustață-Popa 2022, Chen-Dirks-Mustaţă 2023)

Let X be a local complete intersection of pure codimension r, and $\tilde{\alpha}_{X}$ its minimal exponent. Then

- X has k-Du Bois singularities $\Longleftrightarrow \tilde{\alpha}_{X} \geq k+r$;
- X has k-rational singularities $\Longleftrightarrow \tilde{\alpha}_{X}>k+r$.

Implications

Theorem (Saito 1993, Saito 2009, Jung-Kim-Saito-Yoon 2021, Mustață-Olano-Popa-Witaszek 2021, Mustață-Popa 2022, Chen-Dirks-Mustaţă 2023)

Let X be a local complete intersection of pure codimension r, and $\tilde{\alpha}_{X}$ its minimal exponent. Then

- X has k-Du Bois singularities $\Longleftrightarrow \tilde{\alpha}_{X} \geq k+r$;
- X has k-rational singularities $\Longleftrightarrow \tilde{\alpha}_{X}>k+r$.

In particular, in the Ici case

$$
k \text {-rational } \Longrightarrow k \text {-Du Bois } \Longrightarrow(k-1) \text {-rational }
$$

Implications

Theorem (Saito 1993, Saito 2009, Jung-Kim-Saito-Yoon 2021, Mustață-Olano-Popa-Witaszek 2021, Mustață-Popa 2022, Chen-Dirks-Mustață 2023)

Let X be a local complete intersection of pure codimension r, and $\tilde{\alpha}_{X}$ its minimal exponent. Then

- X has k-Du Bois singularities $\Longleftrightarrow \tilde{\alpha}_{X} \geq k+r$;
- X has k-rational singularities $\Longleftrightarrow \tilde{\alpha}_{X}>k+r$.

In particular, in the Ici case

$$
k \text {-rational } \xlongequal{\Longrightarrow} k \text {-Du Bois } \xlongequal{\eta ?}(k-1) \text {-rational }
$$

Does these hold true in general?

Lack of examples

Example

Let Z be the cone over the d-th Veronese embedding of \mathbb{P}^{r}. Then

Lack of examples

Example

Let Z be the cone over the d-th Veronese embedding of \mathbb{P}^{r}. Then

- Z is a toric variety;

Lack of examples

Example

Let Z be the cone over the d-th Veronese embedding of \mathbb{P}^{r}. Then

- Z is a toric variety;
- Z has finite quotient singularities;

Lack of examples

Example

Let Z be the cone over the d-th Veronese embedding of \mathbb{P}^{r}. Then

- Z is a toric variety;
- Z has finite quotient singularities;
- Z is log terminal for all d, and terminal when $r+1>d$.

Lack of examples

Example

Let Z be the cone over the d-th Veronese embedding of \mathbb{P}^{r}. Then

- Z is a toric variety;
- Z has finite quotient singularities;
- Z is log terminal for all d, and terminal when $r+1>d$.

On the other hand,

- We don't have $\Omega_{Z}^{1} \xrightarrow{\text { qis }} \Omega_{Z}^{1}$ for $d \geq 2$.
$\Omega_{z}^{\prime} \approx \mathcal{H}^{\circ} \Omega_{z}^{\prime}$
not refleaive
reflexive

Lack of examples

Example

Let Z be the cone over the d-th Veronese embedding of \mathbb{P}^{r}. Then

- Z is a toric variety;
- Z has finite quotient singularities;
- Z is log terminal for all d, and terminal when $r+1>d$.

On the other hand,

- We don't have $\Omega_{Z}^{1} \xrightarrow{\text { qis }} \Omega_{Z}^{1}$ for $d \geq 2$.

No known example of non-Ici varieties with 1-Du Bois singularities!

New definitions

Observation. The conditions

$$
\begin{aligned}
\Omega_{X}^{p} \xrightarrow{\text { qis }} \underline{\Omega}_{X}^{p}, \forall p \leq k \Longleftrightarrow & \forall p \leq k, \mathcal{H}^{0} \Omega_{X}^{p} \cong \Omega_{X}^{p} \text { and } \\
& \mathcal{H}^{i} \underline{\Omega}_{X}^{p}=0 \text { for all } i>0
\end{aligned}
$$

New definitions

Observation. The conditions

$$
\begin{aligned}
\Omega_{X}^{p} \xrightarrow{\text { qis }} \underline{\Omega}_{X}^{p}, \forall p \leq k \Longleftrightarrow & \forall p \leq k, \mathcal{H}^{0} \underline{\Omega}_{X}^{p} \cong \Omega_{X}^{p} \text { and } \\
& \mathcal{H}^{i} \underline{\Omega}_{X}^{p}=0 \text { for all } i>0
\end{aligned}
$$

Definition

We say that X has pre- $k-$ Du Bois singularities if

$$
\mathcal{H}^{i} \underline{\Omega}_{X}^{p}=0 \quad \text { for all } i>0 \text { and } 0 \leq p \leq k .
$$

New definitions

Observation. The conditions

$$
\begin{aligned}
\Omega_{X}^{p} \xrightarrow{\text { qis }} \underline{\Omega}_{X}^{p}, \forall p \leq k \Longleftrightarrow & \forall p \leq k, \mathcal{H}^{0} \underline{\Omega}_{X}^{p} \cong \Omega_{X}^{p} \text { and } \\
& \mathcal{H}^{i} \underline{\Omega}_{X}^{p}=0 \text { for all } i>0
\end{aligned}
$$

Definition

We say that X has pre- $k-D u$ Bois singularities if

$$
\mathcal{H}^{i} \underline{\Omega}_{X}^{p}=0 \quad \text { for all } i>0 \text { and } 0 \leq p \leq k
$$

Definition

We say that X has pre-k-rational singularities if

$$
\mathcal{H}^{i}\left(\mathbf{R} \mathcal{H o m}\left(\underline{\Omega}_{X}^{n-p}, \omega_{X}^{\bullet}\right)[-n]\right)=0 \quad \text { for all } i>0 \text { and } 0 \leq p \leq k
$$

Properties

Theorem (S.-Venkatesh-Vo)

- Pre-k-rational and pre-k-Du Bois singularities are stable under taking general hyperplane sections;

Properties

Theorem (S.-Venkatesh-Vo)

- Pre-k-rational and pre-k-Du Bois singularities are stable under taking general hyperplane sections;
- For normal varieties, pre-k-rational \Longrightarrow pre- k-Du Bois.

Properties

Theorem (S.-Venkatesh-Vo)

- Pre-k-rational and pre-k-Du Bois singularities are stable under taking general hyperplane sections;
- For normal varieties, pre-k-rational \Longrightarrow pre- $k-D u$ Bois.

Corollary (S.-Venkatesh-Vo)

If X is a variety for which

$$
\Omega_{X}^{p} \rightarrow \mathbf{R H o m}\left(\underline{\Omega}_{X}^{n-p}, \omega_{X}^{\bullet}\right)[-n] \text { are isomorphisms for all } 0 \leq p \leq k,
$$

then

$$
\Omega_{X}^{p} \rightarrow \underline{\Omega}_{X}^{p} \text { are isomorphisms for all } 0 \leq p \leq k
$$

Properties

Theorem (S.-Venkatesh-Vo)

- Pre-k-rational and pre-k-Du Bois singularities are stable under taking general hyperplane sections;
- For normal varieties, pre-k-rational \Longrightarrow pre- $k-D u$ Bois.

Corollary (S.-Venkatesh-Vo)

If X is a variety for which

$$
\Omega_{X}^{p} \rightarrow \mathbf{R H o m}\left(\underline{\Omega}_{X}^{n-p}, \omega_{X}^{\bullet}\right)[-n] \text { are isomorphisms for all } 0 \leq p \leq k,
$$

then

$$
\Omega_{X}^{p} \rightarrow \underline{\Omega}_{X}^{p} \text { are isomorphisms for all } 0 \leq p \leq k
$$

This extends results of Mustață-Popa (2022) and Friedman-Laza (2022) in the Ici or isolated singularities cases.

Properties

Corollary (Friedman-Laza 2022, S.-Venkatesh-Vo)

If X is a normal projective variety with pre-k-rational singularities, then

$$
\underline{h}^{p, q}=\underline{h}^{q, p}=\underline{h}^{n-p, n-q}
$$

for any $0 \leq p \leq k$ and $0 \leq q \leq n$, where $\underline{h}^{p, q}:=\operatorname{dim} \mathbb{H}^{q}\left(Y, \underline{\Omega}_{X}^{p}\right)$.

Properties

Corollary (Friedman-Laza 2022, S.-Venkatesh-Vo)

If X is a normal projective variety with pre-k-rational singularities, then

$$
\underline{h}^{p, q}=\underline{h}^{q, p}=\underline{h}^{n-p, n-q}
$$

for any $0 \leq p \leq k$ and $0 \leq q \leq n$, where $\underline{h}^{p, q}:=\operatorname{dim} \mathbb{H}^{q}\left(Y, \underline{\Omega}_{X}^{p}\right)$.

Corollary (S.-Venkatesh-Vo)

Let $\pi: Y \rightarrow X$ be a finite dominant morphism of normal varieties and let Y have rational singularities. If Y has pre- $k-D u$ Bois singularities, then X also has pre-k-Du Bois singularities.

In particular, quotient singularities are pre- $k-D u$ Bois for all k.

Examples

Example (Toric varieties)

- Toric varieties are pre-k-Du Bois for all k (GNAPP 1988);

Examples

Example (Toric varieties)

- Toric varieties are pre-k-Du Bois for all k (GNAPP 1988);
- Simplicial toric varieties are pre-k-rational for all k (Danilov 1978);

Examples

Example (Toric varieties)

- Toric varieties are pre-k-Du Bois for all k (GNAPP 1988);
- Simplicial toric varieties are pre-k-rational for all k (Danilov 1978);
- Non-simplicial toric varieties are NOT pre-1-rational (S.-Venkatesh-Vo).

Examples

Example (Toric varieties)

- Toric varieties are pre-k-Du Bois for all k (GNAPP 1988);
- Simplicial toric varieties are pre-k-rational for all k (Danilov 1978);
- Non-simplicial toric varieties are NOT pre-1-rational (S.-Venkatesh-Vo).

Example (Quotient singularities)

Quotient singularities are pre-k-Du Bois for all k (Du Bois 1981).

Cones over smooth projective varieties

Example (Cortiñas-Haesemeyer-Walker-Weibel 2010, S.-Venkatesh-Vo)

Let X be a smooth projective variety of dimension n, L an ample line bundle on X. The affine cone over X with conormal bundle L is the affine algebraic variety

$$
C(X, L)=\operatorname{Spec} \bigoplus_{m \geq 0} H^{0}\left(X, L^{m}\right)
$$

Cones over smooth projective varieties

Example (Cortiñas-Haesemeyer-Walker-Weibel 2010, S.-Venkatesh-Vo)

Let X be a smooth projective variety of dimension n, L an ample line bundle on X. The affine cone over X with conormal bundle L is the affine algebraic variety

$$
C(X, L)=\operatorname{Spec} \bigoplus_{m \geq 0} H^{0}\left(X, L^{m}\right)
$$

Then $C(X, L)$ has pre- k-Du Bois singularities if and only if

$$
H^{i}\left(X, \Omega_{X}^{p} \otimes L^{m}\right)=0 \text { for all } i \geq 1, m \geq 1 \text { and } p \leq k
$$

Cones over smooth projective varieties

Definition

A smooth projective variety $X \subset \mathbb{P}^{N}$ is said to satisfy Bott vanishing if

$$
H^{i}\left(\Omega_{X}^{k} \otimes L\right)=0
$$

for all $i>0, k \geq 0$ and any ample line bundle L on X.

Cones over smooth projective varieties

Definition

A smooth projective variety $X \subset \mathbb{P}^{N}$ is said to satisfy Bott vanishing if

$$
H^{i}\left(\Omega_{X}^{k} \otimes L\right)=0
$$

for all $i>0, k \geq 0$ and any ample line bundle L on X.

Example

The following varieties satisfy Bott vanishing: Projective spaces (Bott 1957), toric varieties (Danilov 1978, Steenbrink), abelian varieties, del Pezzo surfaces of degree ≥ 5 (Totaro 2020), K3 surfaces of Picard number 1 and degree 20 and ≥ 24 (Totaro 2020), stable GIT quotients of \mathbb{P}^{n} by the action of PGL_{2} (Torres 2020), a list of 37 Fano 3-folds (Totaro 2023), projective varieties with int-amplified endomorphism (Kawakami-Totaro 2023) etc.

Cones over smooth projective varieties

Definition

A smooth projective variety $X \subset \mathbb{P}^{N}$ is said to satisfy Bott vanishing if

$$
H^{i}\left(\Omega_{X}^{k} \otimes L\right)=0
$$

for all $i>0, k \geq 0$ and any ample line bundle L on X.

Example

The following varieties satisfy Bott vanishing: Projective spaces (Bott 1957), toric varieties (Danilov 1978, Steenbrink), abelian varieties, del Pezzo surfaces of degree ≥ 5 (Totaro 2020), K3 surfaces of Picard number 1 and degree 20 and ≥ 24 (Totaro 2020), stable GIT quotients of \mathbb{P}^{n} by the action of PGL_{2} (Torres 2020), a list of 37 Fano 3-folds (Totaro 2023), projective varieties with int-amplified endomorphism (Kawakami-Totaro 2023) etc.

It follows that the cones over these varieties associated to any ample conormal bundle are pre- k-Du Bois for all k.

Cones over smooth projective varieties

Example (S.-Venkatesh-Vo)

- For $k \leq n$, the cone $C(X, L)$ has pre- k-rational singularities if and only if

$$
H^{i}\left(X, \Omega_{X}^{p} \otimes L^{m}\right)=0 \text { for all } i \geq 1, m \geq 0 \text { and } p \leq k
$$

except possibly when $m=0$ and $i=p$, in which case

$$
H^{0}\left(X, \mathcal{O}_{X}\right) \xrightarrow{\simeq} H^{1}\left(X, \Omega_{X}^{1}\right) \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} H^{k}\left(X, \Omega_{X}^{k}\right)
$$

are isomorphisms via the map $c_{1}(L)$;

- If $C(X, L)$ has pre- n-ratonal singularities, then it has pre-($n+1$)-rational singularities.

Higher rational and higher Du Bois singularities

Definition

Let X be a variety. X is said to have k-rational singularities if it is normal, and
(1) X is pre- k-rational;
(2) $\operatorname{codim}_{X}\left(X_{\text {sing }}\right)>2 k+1$.

Higher rational and higher Du Bois singularities

Definition

Let X be a variety. X is said to have k-rational singularities if it is normal, and
(1) X is pre- k-rational;
(2) $\operatorname{codim}_{X}\left(X_{\text {sing }}\right)>2 k+1$.

Definition

Let X be a variety. X has k-Du Bois singularities if it is seminormal, and
(1) X has pre- k-Du Bois singularities;
(2) $\operatorname{codim}_{X}\left(X_{\text {sing }}\right) \geq 2 k+1$;
(3) $\mathcal{H}^{0} \Omega_{X}^{p}$ is reflexive, for all $p \leq k$.

Properties of k-rational and k-Du Bois singularities

Proposition (S.-Venkatesh-Vo)

(1) 0-rational singularities \Longleftrightarrow rational singularities; $0-D u$ Bois singularities $\Longleftrightarrow D u$ Bois singularities.

Properties of k-rational and k-Du Bois singularities

Proposition (S.-Venkatesh-Vo)

(1) 0-rational singularities \Longleftrightarrow rational singularities; $0-D u$ Bois singularities $\Longleftrightarrow D u$ Bois singularities.
(2) When X is Ici, these agree with the existing definitions.

Properties of k-rational and k-Du Bois singularities

Proposition (S.-Venkatesh-Vo)

(1) 0-rational singularities \Longleftrightarrow rational singularities; 0-Du Bois singularities $\Longleftrightarrow D u$ Bois singularities.
(2) When X is Ici, these agree with the existing definitions.

Theorem (S.-Venkatesh-Vo)

If a variety X has k-rational singularities, then it has k - $D u$ Bois singularities.

Examples

Example

Let X be an affine toric variety and let $c:=\operatorname{codim}_{X}\left(X_{\text {sing }}\right)$. Then:
(1) X has k-Du Bois singularities for all $0 \leq k \leq \frac{c-1}{2}$;
(2) If X is simplicial, then it has k-rational singularities for all $0 \leq k<\frac{c-1}{2}$;
(3) If X is non-simplicial, then it does not have pre-1-rational singularities, hence it does not have 1 -rational singularities.

Example

The cone $C(X, L)$ is k-Du Bois if and only if it is pre- k-Du Bois, $k \leq n / 2$ and

$$
H^{i}\left(X, \mathcal{O}_{X}\right)=0 \text { for all } 0<i \leq k
$$

It is k-rational if and only if it is pre- k-rational and $k<n / 2$.

Example

The cone $C(X, L)$ is k-Du Bois if and only if it is pre- k-Du Bois, $k \leq n / 2$ and

$$
H^{i}\left(X, \mathcal{O}_{X}\right)=0 \text { for all } 0<i \leq k
$$

It is k-rational if and only if it is pre- k-rational and $k<n / 2$.

Example

(1) The cone $Z=C\left(\mathbb{P}^{r}, \mathcal{O}(d)\right)$ has k-Du Bois singularities if and only if $k \leq \frac{r}{2}$. It is k-rational if and only if $k<\frac{r}{2}$.
(2) The cone $Z=C(X, \mathcal{O}(d))$ over a quartic surface $X \subset \mathbb{P}^{3}$ is not 2-Du Bois, and is 1-Du Bois if and only if $d \geq 5$. However, Z does not have rational singularities.

Proof that pre- k-rational \Longrightarrow pre- k-Du Bois

Case X is projective. Note that we have natural maps

$$
\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \xrightarrow{f} \underline{\Omega}_{X}^{k} \xrightarrow{g} \mathbf{R} \mathcal{H o m}\left(\underline{\Omega}_{X}^{n-k}, \omega_{X}^{\bullet}\right)[-n]
$$

Proof that pre- k-rational \Longrightarrow pre- k-Du Bois

Case X is projective. Note that we have natural maps

$$
\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \xrightarrow{f} \underline{\Omega}_{X}^{k} \xrightarrow{g} \mathbf{R} \mathcal{H o m}\left(\underline{\Omega}_{X}^{n-k}, \omega_{X}^{\bullet}\right)[-n] .
$$

1 Since X is normal and pre- k-rational, the composition $g \circ f$ is a quasi-isomorphism. It follows that f induces injective map

$$
\begin{equation*}
H^{i}\left(X, \mathcal{H}^{0} \underline{\Omega}_{X}^{k}\right) \rightarrow \mathbb{H}^{i}\left(X, \underline{\Omega}_{X}^{k}\right) \tag{*}
\end{equation*}
$$

on hypercohomology for all i;

Proof that pre- k-rational \Longrightarrow pre- k-Du Bois

Case X is projective. Note that we have natural maps

$$
\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \xrightarrow{f} \underline{\Omega}_{X}^{k} \xrightarrow{g} \mathbf{R} \mathcal{H o m}\left(\underline{\Omega}_{X}^{n-k}, \omega_{X}^{\bullet}\right)[-n] .
$$

1 Since X is normal and pre- k-rational, the composition $g \circ f$ is a quasi-isomorphism. It follows that f induces injective map

$$
\begin{equation*}
H^{i}\left(X, \mathcal{H}^{0} \underline{\Omega}_{X}^{k}\right) \rightarrow \mathbb{H}^{i}\left(X, \underline{\Omega}_{X}^{k}\right) \tag{*}
\end{equation*}
$$

on hypercohomology for all i;
2 By Hodge theory, we have surjections

$$
H^{i}\left(X, \mathcal{H}^{0} \underline{\Omega}_{\bar{X}}^{\leq k}\right) \rightarrow \mathbb{H}^{i}\left(X, \Omega_{\bar{X}}^{\leq k}\right)
$$

for all i and k. If X is pre- $(k-1)$-Du Bois (which we can assume by induction), then $(*)$ is surjective for all i;

3 Combining (1) and (2), we see that $(*)$ is an isomorphism. This implies

$$
\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \xrightarrow{\text { qis }} \underline{\Omega}_{X}^{k}
$$

(i.e. X is pre- k-Du Bois), provided the "bad locus"

$$
\Sigma_{X}:=\operatorname{supp} \operatorname{Cone}\left(\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \rightarrow \underline{\Omega}_{X}^{k}\right)
$$

is zero-dimensional;

3 Combining (1) and (2), we see that $(*)$ is an isomorphism. This implies

$$
\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \xrightarrow{\text { qis }} \underline{\Omega}_{X}^{k}
$$

(i.e. X is pre- k-Du Bois), provided the "bad locus"

$$
\Sigma_{X}:=\operatorname{supp} \operatorname{Cone}\left(\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \rightarrow \underline{\Omega}_{X}^{k}\right)
$$

is zero-dimensional;
4 Using induction, as well as results about stability under taking general hyperplane sections, we reduce to the case $\operatorname{dim} \Sigma_{X} \leq 0$.

3 Combining (1) and (2), we see that $(*)$ is an isomorphism. This implies

$$
\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \xrightarrow{\text { qis }} \underline{\Omega}_{X}^{k}
$$

(i.e. X is pre- k-Du Bois), provided the "bad locus"

$$
\Sigma_{X}:=\operatorname{supp} \operatorname{Cone}\left(\mathcal{H}^{0} \underline{\Omega}_{X}^{k} \rightarrow \underline{\Omega}_{X}^{k}\right)
$$

is zero-dimensional;
4 Using induction, as well as results about stability under taking general hyperplane sections, we reduce to the case $\operatorname{dim} \Sigma_{X} \leq 0$.

The general case. When X is not necessarily projective, we don't have the surjection given by Hodge theory. The trick, due to Kovács, is to compactify X and use excision of local cohomology to get rid of the contribution from the boundary of the compactification.

Thank you for listening!

